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Key points: 

- Doppler lidar observations show sub-cloud turbulence explains half of the variance in 
cloud-base updrafts for shallow cumulus ensembles 

- The relationship has weak diurnal variation except in the early morning and late afternoon 
- We develop a new approach of observing ensemble-averaged quantities from lidar 

measurements made at a fixed point 
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Abstract 

Sub-cloud turbulent kinetic energy has been used to parameterize the cloud-base updraft velocity (wb) in 

cumulus parameterizations. The validity of this idea has never been proved in observations. Instead, it was 

challenged by recent Doppler lidar observations showing a poor correlation between the two. We argue that 

the low correlation is likely caused by the difficulty of a fixed-point lidar to measure ensemble properties 

of cumulus fields. Taking advantage of the stationarity and ergodicity of early-afternoon convection, we 

developed a lidar sampling methodology to measure wb of a shallow cumulus (ShCu) ensemble (not a single 

ShCu). By analyzing 128 ShCu ensembles over the Southern Great Plains, we show that the ensemble 

properties of sub-cloud turbulence explain nearly half of the variability in ensemble-mean wb, 

demonstrating the ability of sub-cloud turbulence to dictate wb. The derived empirical formulas will be 

useful for developing cumulus parameterizations and satellite inference of wb.    
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1. Introduction 

Cloud-base updraft velocity (wb) is a crucially important variable as it influences various 

aspects of cumulus clouds (Rogers and Yau, 1996). The wb modulates the aerosol cloud-mediated 

effect by governing the supersaturation near cloud bases (Twomey, 1959; Rosenfeld, 2014). In 

polluted conditions, cloud droplet size and number concentration are more sensitive to wb than 

aerosol concentration and size (Reutter et al., 2009). Moreover, wb  dictates lateral entrainment of 

cumulus that remains an unresolved bottleneck for climate modeling (Donner et al., 2016). 

Despite its importance, current cumulus parameterization schemes rarely express wb 

explicitly (Donner et al., 2016). Most schemes parameterize the cloud-base mass flux (Mb) without 

specifying the wb. For example, Arakawa and Schubert (1974) determine the Mb by adjusting the 

cloud work function towards a value maintaining an equilibrium between the large-scale forcing 

and the convection. Krishnamurti et al. (1983) determine Mb under the assumption that convection 

must balance the column integrated vertical advection of moisture. Kain and Fritsch (1993) and 

Grell (1993) parameterize Mb by requesting the convection to remove the large-scale instability 

over the convective time scale.  

The earliest effort that explicitly represents the wb in Mb closure is Brown (1979) who 

approximates the wb using the environmental vertical velocity from the surrounding nine points at 

lower tropospheric levels. This scheme is physically flawed by the fact that the air masses that 

initiate cumulus clouds are convective in nature. This issue is addressed by Neggers et al. (2009) 

and Fletcher and Bretherton (2010) (FB10) who argued that the wb could be dictated by the sub-

cloud turbulent intensity. FB10 used a set of cloud-resolving simulations to empirically derive the 

following formula to represent the wb: 

wb = 0.28×TKEML
1/2 + 0.64, (1) 

in which the TKEML is the turbulent kinetic energy averaged horizontally and vertically in the sub-

cloud mixed layer. FB10 shows that such a boundary-layer-based mass flux closure scheme 

outperforms several commonly used schemes for three cumulus cases.  

Still lacking is observational evidence of the ability of TKEML to explain the wb. As quoted 

by Donner et al. (2016):  “… parameterizations that do provide vertical velocities have been 
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subject to limited evaluation against what have until recently been scant observations.” The only 

observational pursuit to evaluate the Eq. (1) is from Lareau et al. (2018) who analyzed Doppler 

lidar observations of ~1500 individual shallow cumulus (ShCu) over the Southern Great Plains 

(SGP), finding that sub-cloud vertical velocity variance (a proxy for TKEML) explains only a few 

percent of the wb variability. This led them to cast doubt upon the relationship. They argue that 

sub-cloud updrafts must work against negative buoyancy near the top of the mixed layer to 

generate wb, and such a penetrative nature of the convection deteriorates their correlations.  

Given the contrasting results, it is imperative to answer the question of whether or not sub-

cloud turbulence explains the wb. This is not only important for cumulus parameterizations but 

also crucial for advancing other pursuits in the field of cumulus dynamics. First, theoretical 

inquiries of cumulus dynamics often rely on the assumption of a tight coupling between the sub-

cloud turbulence and wb. For example, in one-dimensional bulk models of boundary layer clouds, 

a key variable is the Deardoff velocity scale, w*, which dictates the sub-cloud turbulence intensity 

(Betts, 1973; Neggers et al., 2006; Stevens, 2006; Zheng, 2019). Linking the w* with the wb is the 

basis for several important coupling processes between the cloud and sub-cloud layers (Neggers 

et al., 2006; van Stratum et al., 2014; Zheng et al., 2020). Second, recently emerging new satellite 

remote sensing methodologies of retrieving wb (Zheng and Rosenfeld, 2015; Zheng et al., 2015, 

2016) have offered great insights into the aerosol indirect effect and climate change (Rosenfeld et 

al., 2016; Seinfeld et al., 2016; Li et al., 2017; Grosvenor et al., 2018; Rosenfeld et al., 2019). 

These studies infer the wb via quantifying the TKEML or its equivalents. Evaluating if the TKEML 

explains the wb is essential to evaluate the physical validity of these techniques.  

To that end, this study examines the relationship between the wb and sub-cloud turbulence 

for ShCu using DL observations over the SGP. We focus on wb of ShCu ensembles, not single 

ShCu, because the former is more relevant to cumulus parameterization. We show that ensemble-

averaged wb and sub-cloud turbulence are highly correlated with statistical significance 

(correlation coefficient greater than 0.7). Evaluating the relationship on ensembles but not on 

individual ShCu might explain the disparities with the previous finding (Lareau et al., 2018). The 

next session discusses the difference between the ensemble-mean wb and the wb of single cumuli. 

It lays the foundation for developing the sampling strategy of ShCu ensembles. Section 3 
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introduces the observational data and methodology. Section 4 shows the results, followed by 

discussions. The last section presents the concluding remarks. 

 

2. wb of cumulus ensembles 

Distinguishing between the ensemble and individual ShCu is necessary. The concept of 

cumulus ensemble is a fundamental building block for all cumulus parameterizations (Arakawa 

and Schubert, 1974). A cumulus ensemble on spatial scales of several tens of kilometers is 

composed of individual cumulus with a wide range of distributions in size and age. Since the 

individual cumulus clouds are at different stages of their lifetime, their physical properties differ 

considerably even if the surface and large-scale forcing are uniform.  

The difference could be illustrated by Figure 1 showing a ShCu ensemble simulated by the 

Weather Research and Forecasting (WRF) in the Large-Eddy Simulation (LES) Atmospheric 

Radiation Measurements (ARM) Symbiotic Simulation and Observation (LASSO) project (Text 

S1)(Gustafson Jr et al., 2020). The surface fluxes and large-scale forcing are uniform over the 14.4 

× 14.4 km domain with a horizontal grid size of 100 m. The vertical velocity field at the cloud-

base level shows a distinctive pattern with strong updrafts within clouds surrounding by shells of 

downdrafts (Fig. 1a). We can see a rough correspondence between the vertical velocity field at the 

cloud-base level (Fig. 1a) and the TKEML (Fig. 1b): regions with larger TKEML typically have 

stronger updrafts near cloud bases. Such a correspondence, however, breaks down on the length 

scale of a single ShCu. For example, the vertical velocity field shows strong updrafts within 

individual clouds surrounding by shells of downdrafts whereas the TKEML variability across the 

cloud edges is considerably more uniform. This is not surprising since both updrafts and 

downdrafts contribute to the vertical mixing, jointly regulating the TKEML. As a result, their 

covariation on the length scale of individual ShCu tends to be noisy, which is confirmed by Figure 

1c that compares the two quantities averaged over individual ShCu. The degree of scattering is 

likely to increase substantially when the synoptic and surface forcings are allowed to change.  
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Figure 1: Examples of the different length scales of spatial variability of wb and TKEML 

using WRF-simulated ShCu on 21 UTC, June 6, 2015. (a) Spatial distribution of vertical velocity 

at the cloud-base level with maximum cloud coverage. Black contours mark the cloudy regions 

with liquid water content greater than 0.01 g/m3. (b) The same scene but the color shading is the 

TKEML. (c)  Scatter plot of cloud-base vertical velocity versus TKEML, with each point 

representing mean over individual cumuli. The size of a point is proportional to the size of 

cumuli. The data are obtained from the first phase of LASSO project. The TKEML is computed as 

0.5���� � 	�� � 
��� averaged below the cloud base, in which the perturbation quantities are 

defined as deviations from domain average at each level at instantaneous times. 

  

Measuring the ensemble-mean wb from a surface-based DL, however, is challenging. The 

DL at a fixed location samples a line of cloud elements along the direction of horizontal winds. In 

order to sample an adequate amount of individual cumuli to constitute an ensemble, the sampling 

time window must be at least several hours. For example, for the wind speed of 5 m/s, a 2-hour 

sampling window corresponds to a distance of ~ 36 km, comparable to the spatial scale of a 

continental ShCu ensemble. However, ShCu experiences distinctive diurnal variations over the 

continent. Within the 2-hour sampling period, the ShCu ensemble may evolve, leading to sampling 

uncertainties. Fortunately, a convective boundary layer often experiences a quasi-steady state 

(Moeng, 1984; Lensky and Rosenfeld, 2006; Stull, 2012). In atmospheric science, whether a 
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dynamical system can be considered quasi-steady depends on the difference between the 

characteristic time scale of the system and the time scale of external forcing. For a typical 

convective boundary layer over the continent, the surface forcing time scale is on the order of a 

few hours (defined as half of the period when the surface heat fluxes remain positive) whereas the 

time scale for shallow convective circulations is several tens of minutes (i.e. the convective time 

scale) (Fig. S1a). Such a time scale separation allows the mixed layer to remain in a quasi-steady 

state in which changes in turbulent properties are negligible compared with the turbulence 

production and dissipation terms (Stull, 2012). This quasi-steady assumption is particularly valid 

in the early afternoon when the surface fluxes reach their plateau and their time derivatives 

minimize (Fig. S1b). As such, focusing on early-afternoon ShCu can reduce the uncertainty of 

sampling due to temporal evolution.  

In summary, to measure the wb of ShCu ensembles from surface-mounted DL, the sampling 

window must be at least a few hours to sample enough amount of individual ShCu. Moreover, an 

ideal sampling period is the early afternoon when the boundary layer is close to stationarity.    

 

3. Data and Methodology 

We use observations from the Department of Energy’s Atmospheric Radiation Measurement 

(ARM) SGP observatory. The key instrument used in this study is the DL. The DL measures 

vertical velocity with ~ 1 s temporal and 30 m vertical grid spacing. The transmitted wavelength 

is 1.5 µm. In addition to DL, we also use data from radiosondes, a ceilometer, a Ka-band cloud 

radar (KAZR), and ARM instruments measuring surface meteorological variables routinely. 

3.1. An example case  

To illustrate the sampling principle of ShCu ensembles, Figure 2a shows a MODIS satellite 

imagery of a ShCu field over the SGP at 20:30 UTC on June 10, 2012.  The wind is southeasterly 

at a speed of ~ 9 m/s, corresponding to a horizontal distance of ~ 70 km over the two hours (the 

red solid line in Fig. 2a). One can see a few dozens of single cumuli drifting over the SGP site 

along the wind direction. Figure 2b shows a time-height plot of the DL from 19 to 21 UTC, 

corresponding to 13 ~ 15 local standard time (LST). Black dots mark the cloud-base heights (zb) 
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measured by the ceilometer. To count how many individual cumuli are sampled during this period, 

we use the DL reflectivity to identify single cumuli. Figure 2c shows the zoomed-in window near 

cloud bases during the 19:48 ~ 20:00 UTC. The navy contours encompass pixels with DL 

reflectivity greater than 10-4.6 m-1 sr-1, a threshold that defines cloudy pixels (Lareau et al., 2018). 

Based on the reflectivity threshold, a total of 84 individual clouds are identified during the 2-h 

period. The majority of them have a duration shorter than 4 s, which seems too short to constitute 

a single cloud. Thus, we congregate clouds with gaps < 20 s, reducing the cloud population to 29, 

with 12 of them lasting longer than 30 s.    

 

Figure 2: An example case of the shallow cumulus field on Jun 10, 2012, over the SGP. 

(a) MODIS image centered on the SGP site (red star) at ~20:30 UTC. The red solid line 

marks the rough direction and travel distance of the mean horizontal wind during the 19 ~ 

21 UTC. (b) Height-time plot of Doppler lidar image of vertical velocity during a two-

hour window from 19 to 21 UTC. The black dots mark the cloud-base heights measured 

by a ceilometer. The blue rectangle marks a smaller window shown in the (c). Navy 

contours mark the cloudy regions defined as groups of pixels with reflectivity greater 

than 10-4.6 m-1 sr-1.  

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

3.2. Computing the wb 

We select “cloud-base” DL pixels through two steps. First, to exclude the decoupled cloud 

elements and elevated cloud sides, pixels with cloud bases higher than lifting condensation level 

(LCL) by 30% are removed. Second, for the remaining coupled clouds, we select pixels within 

three gates below the cloud base (~ 100 m) and cloudy pixels above the cloud base. These pixels 

are defined as “cloud-base” pixels. Because of the strong signal attenuation, the DL only penetrates 

< 100 m into the clouds. Therefore, the cloudy pixels are mostly concentrated near several tens of 

meters above the cloud base. Figure S2 shows a comparison of the vertical velocity probability 

density function (PDF) between the two sub-groups of “cloud-base” pixels. Their PDF 

distributions are overall similar, suggesting that it is tenable to combine them as “cloud-base” 

pixels.  

To compute the ensemble-mean wb, we average the selected vertical velocities in two ways. 

The first is to simply average the vertical velocities above a threshold: 
� = ∑��
� ∑��⁄ , in which 

the Ni represents the frequency of occurrence of positive vertical velocity wi that is greater than a 

critical value (wcrit).  This is the common way for cloud-base mass fluxes study. The second way 

of averaging is weighted by volume: 
� ��� = ∑��
�
2 ∑��� 
�. The volume-averaged updraft speed 

has been considered as more relevant to the understanding of aerosol cloud-mediated effects 

because it gives more weight to the larger vertical velocities that generate clouds with greater 

volume (Rosenfeld et al., 2014; Zheng et al., 2015; Rosenfeld et al., 2016).  

3.3. Other quantities 

Ideally, the TKEML should be computed as 0.5���� � 	�� �
��� averaged below the cloud 

base. However, the DL can only measure the vertical component, 0.5
′�, denoted as TKEwML. In 

this study, we use the TKEw
ML to approximate the TKEML, motivated by the fact that TKEw

ML 

dominates the TKEML in typical convective boundary layers (Stull, 2012). The potential 

contributions from horizontal components of TKEML will be taken into account in our analyses in 

section 3. 

We used the surface temperature and moisture measured from the ARM Surface 

Meteorology Systems to compute the LCL using the exact analytical formula of Romps (2017). 
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As described in the example case, we used the threshold of DL reflectivity to identify single cumuli. 

To compute the chord length of individual cumuli, we used the DL product of horizontal wind 

speed near cloud-base, which is derived from a velocity azimuth display algorithm (Teschke and 

Lehmann, 2017). The multiplication of cloud-base horizontal wind speed and individual cloud 

duration yields the cloud chord length.    

3.4. Case selection 

A total of 128 ShCu days were selected between 2011 ~ 2014. The selection criterion is in 

principle similar to previous studies (Zhang and Klein, 2013; Lareau et al., 2018), which involves 

both objective and subjective criteria. The objective criteria include three steps: (1) the cloud-base 

height (defined as the mean of the lowest quartile within the 2-h period) has to be within 30% of 

LCL to ensure coupling, (2) the KAZR reflectivity cannot exceed 0 dBZ between the surface and 

cloud base to ensure no considerable precipitation, and (3) the cloud duration cannot exceed 30 

min to exclude stratiform clouds. Besides, we examine imageries from KAZR and 13th 

Geostationary Operational Environmental Satellite to ensure ShCu-like characteristics. This is the 

best we can do since a completely objective method for selecting ShCu remains missing, although 

the emerging new technique of machine learning is promising to address this issue in the near 

future (Rasp et al., 2019).  

Based on these criteria, we obtain 32 ShCu days per year, similar to the 28 ShCu days per 

year in Zhang and Klein (2013) and Lareau et al. (2018), suggesting that there is no marked 

sampling difference between this study and previous ones. Fig S3 shows the statistics of these 

selected ShCu ensembles. On average, each ensemble is composed of ~ 20 individual ShCu, with 

half lasting longer than 30 secs. The majority of the ensembles have the maximum cloud chord 

length shorter than 5 km, consistent with prior knowledge. 

 

4. Results 

Figure 3 shows the scatter plots of 
����� (a) and 
�
��������� (b) versus (TKEwM)1/2

 for different wcrit. 

Overall, the (TKEwM)1/2
 is a good predictor of cloud-base updrafts, explaining ~ 50% of their 

variances. Note that the degree of scattering is still noticeable, but given the instrument error of 
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the DL (~ 0.1 m/s) and potential sampling errors due to the assumption of stationarity, such degrees 

of correlation are good enough for demonstrating the physical validness. To our knowledge, this 

is the first observational evidence supporting the ability of the sub-cloud turbulence to dictate 

cloud-base updrafts that was only found in high-resolution models (Grant and Brown, 1999; 

Fletcher and Bretherton, 2010; van Stratum et al., 2014). Such good correlations suggest a 

continuity of vertical momentum between the sub-cloud layer and cloud base, despite the in-

between weakly stable layer (i.e. cloud-base transition layer) (Neggers et al., 2007; Stevens, 2007). 

Indeed, the stability of the transition layer interacts with the convective circulation, a manifestation 

of the dynamical coupling between the sub-cloud and cloud layers, to reach an equilibrium that 

maintains the mass conservation (Neggers et al., 2006; Fletcher and Bretherton, 2010). In this 

regard, the transition layer property should not be considered an external forcing that alters the 

coupling between the sub-cloud and cloud-base dynamics, but an internal parameter that responds 

to the circulation.   

Both 
�����  and 
�
���������  increase with the wcrit, but the 
�

���������  shows much weaker sensitivity 

primarily because the 
�
��������� gives more weight to the larger vertical velocities. The intercepts also 

increase with wcrit, which is an artificial consequence of using non-zero wcrit. Physically speaking, 

a zero TKEwM should lead to zero cloud-base updraft speed. Therefore, we will focus our 

subsequent discussions on the slopes that bear more physical meaning than intercepts.  

To compare our results with that from FB10, we visualize the Eq. (1) in Figure 3a (light blue 

curve). FB10 uses the wcrit of 0.5 m/s. Our empirical estimate (the red line) shows a stronger 

sensitivity of 
����� to the sub-cloud turbulence than FB10 by more than a factor of 3. What causes 

the difference? One possible reason is that we used the TKEw
M  that does not include the horizontal 

components of the TKE, leading to smaller values of TKE and, thus, a steeper slope. Another more 

likely reason is that the horizontal grid spacing of the model used by FB10 are too coarse (1 km) 

to accurately simulate the vertical velocities. For instance, modeled vertical velocities decrease 

with the model grid spacing by a power law of -2/3 (Rauscher et al., 2016; Donner et al., 2016). 

The underestimated 
����� due to coarse grid spacing may flatten the slope of 
����� versus (TKEML)1/2 

in FB10.   
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To understand which factor is responsible, we use the LES data of 18 ShCu days from the 

LASSO project (Text S1). The LASSO horizontal grid spacing is 100 m, 10 times finer than that 

used in FB10. With the model output of three-dimensional winds, we are able to diagnose the full 

components of TKEML so that we can conduct an “apple-to-apple” comparison between the 

LASSO and FB10. As shown by the green lines in Fig. 3a, LASSO models (WRF and System for 

Atmospheric Modeling, SAM) show slopes steeper than the FB10 by more than a factor of 3 (see 

Fig. S4 for their scatter plots with statistical details).  This confirms that the flatter slope of FB10 

is likely caused by the coarse model grid spacing. The comparison between the LASSO and DL, 

which is not the focus of this study, is discussed in the supplementary material (Text S2). Its key 

message is that the cloud-base vertical velocities simulated by the LASSO models are biased 

toward updrafts due to misrepresented model physics such as lateral mixing (Endo et al., 2019), 

leading to a steeper slope than the DL.    

We have tabulated the empirical formulas for 
����� and 
�
���������for different wcrit (Table S1) so 

that readers can use what suits their research interests.   
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Figure 3: Scatter plots of 
����� (a) and 
�
��������� (b) versus (TKEwM)1/2

  for wcri = 0, 0.1, and 0.5 m/s. Each 

point represents a ShCu ensemble mean. The blue solid line marks the Eq. (1), the empirical 

formula developed in Fletcher and Bretherton (2010).  

 

5. Discussions  

5.1. Cloud center versus edge 

For any vertically pointed instruments, the sampling is off the cloud center, leading to a bias 

toward edges of clouds (e.g. Romps and Vogelmann, 2017). How does the off-center sampling 

influence the results? To answer it, we divide the sampled cloud-base DL pixels into two categories: 

those closer to the center of individual cloud chords than the edges are categorized as “center” 

pixels whereas others are “edge” pixels. Comparing the results from these two groups (Fig. S5) 

shows that sampling the “center” pixels yields a relationship with a higher R, a steeper slope, and 

an intercept closer to the origin than that sampling the “edge” pixels. This makes physical sense 

because cloud edges are more influenced by the subsiding shells and lateral mixing (e.g. Heus and 

Jonker, 2008), both deteriorating the relationship. Despite the difference, the sensitivity of the 

result to this potential bias is not significant (even the relationship for the “edge” pixels has an R 

of 0.65). This suggests that our ensemble-based sampling methodology allows for a statistically 

robust characterization of the ensemble-mean cloud-base updraft speed.                           

 

5.2. Diurnal dependence 

Given that all cases are in the early afternoon, one may ask how the observed relationship is 

representative of the other times of a diurnal cycle. To address this question, we use the LASSO 

data to examine its diurnal dependence. We chose the wcrit = 0 m/s for determining the 
����� because, 

as noted above, using an ad-hoc wcrit, say 0.5 m/s, leads to a markedly positive 
�����  for zero 

(TKEw
M)1/2. By using wcri = 0 m/s, we can force the best-fit line through the origin through the 

least-square algorithm, freeing us from the unphysical meaning of positive intercepts. Figure 4a 

and b show the scatterplots of the 
����� versus (TKEwM)1/2
 in different local times simulated by WRF 

and SAM, respectively. Both models show notably significant correlations between the two 
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quantities in different phases of a diurnal cycle, confirming the ability of (TKEwM)1/2
 to explain the 

variability of 
�����. More importantly, the slope of the relationship varies little with local time, 

except in the early morning and late afternoon (Fig. 4c and d). In the early morning, the stronger 

capping inversion weakens the speeds of rising thermals when they penetrating into the inversion, 

leading to smaller 
�����  for given sub-cloud turbulence (Fig. S1c). Such a stabilization effect 

becomes less influential as the convection kicks up, which lessens the inversion strength. In the 

late afternoon, as the solar insolation weakens, the surface fluxes decrease considerably whereas 

the boundary layer remains deep (Fig. S1d). This leads to a decoupling between the ShCu and the 

surface (Stull, 2012), which may explain the flatter slope between 
����� and (TKEw
M)1/2

  in the late 

afternoon.    

In summary, the diurnal dependence of the coupling between the wb and sub-cloud turbulence 

is small, except in the early morning and late afternoon when the strong capping inversion and 

cloud-surface decoupling may lead to flatter slopes, respectively.     
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Figure 4: Scatterplots of 
����� (wcrit = 0 m/s) versus the (TKEwM)1/2
  grouped by the local 

standard time, simulated by WRF (a) and SAM (b). Each group of points corresponds to a best-

fit linear regression line forced through zero. The slopes of the best-fit lines are plotted in (c) and 

(d) for WRF and SAM, respectively.  

 

6. Conclusion 

This study examines the relationship between the sub-cloud turbulence and cloud base 

updrafts using Doppler lidar (DL) observations of 128 shallow cumulus (ShCu) ensembles over 

the Southern Great Plains. We proposed a new DL sampling method that allows measuring the 

cloud-base updrafts for an ensemble, instead of individual, ShCu. Specifically, we take advantage 

of the stationarity and ergodicity of ShCu-topped boundary layers in the early afternoon when the 

temporal change in the surface forcing is minimum. For each ShCu case, we selected a 2-hour 

window of DL that includes an average amount of ~ 20 individual cumuli with varying sizes, 

constituting an ensemble. This allows us to compute the ensemble-averaged quantities from DL 

measurements made at a fixed point. By analyzing the 128 ShCu ensembles, we found that the 

vertical velocity variance explains ~ 50% variability of ensemble-mean cloud-base updrafts, thus 

supporting the widely-held hypothesis and practice of using the sub-cloud turbulent kinetic energy 

to parameterize the cloud-base updrafts in some state-of-the-art mass flux closure schemes of 

convection parameterization (Bretherton et al., 2004; Neggers et al., 2009; Fletcher and Bretherton, 

2010). To our knowledge, this is the first observational evidence that demonstrates the ability of 

sub-cloud turbulence intensity to dictate the cloud-base updrafts. 

With the observational data, we derived empirical relationships between the square-root of 

sub-cloud turbulent kinetic energy and ensemble-mean cloud-base updraft speeds that are 

computed for different thresholds of vertical velocity and by different averaging schemes. 

Although all the 128 cases were sampled in the early afternoon, the diurnal variation of the 

relationship is weak (except in the early morning and late afternoon), as shown by the LES 

simulations of 18 ShCu cases over the SGP. These empirical formulas are useful for the 

developments of cumulus parameterizations, theoretical studies of ShCu dynamics, and satellite-

based inference of cloud-base updrafts.   
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